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Abstract

Little is known about the long-term, dynamic effects of temperature on human cap-
ital. We analyze impacts of life cycle heat exposure on school completion using panel
data spanning over forty birth cohorts in India, combined with a dynamic framework
that incorporates lagged weather shocks and parental investments. Contemporaneous
heat exposure systematically reduces grade completion whereas early-life heat exposure
is sometimes associated with increased grade completion, likely due to compensatory
parental investments. Parental investments also increase with contemporaneous expo-
sure, but these efforts do not fully mitigate heat damages. Our findings underscore the
importance of examining temperature impacts over long time frames.
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1 Introduction

As climate change continues to accelerate, more frequent extreme weather events dispropor-
tionately affect low- and middle-income countries (LMICs) (Diffenbaugh and Burke, 2019).
In these settings, adverse weather impacts a host of outcomes, from agricultural productivity
(Taraz, 2018; Aragon et al., 2021; Liu et al., 2023) and conflict (Hsiang et al., 2013) to student
learning (Park et al., 2021) and academic performance (Garg et al., 2020). Empirical research
in this domain has typically linked short-term adverse weather shocks to contemporaneous
changes in outcomes, after which these effects are used to infer longer-term implications of
climate change. This extrapolation has its limitations, however, given that climate change
unfolds over decades and climate-dependent outcomes often form dynamically over time.

Human capital is an example of one such outcome. Its development is a dynamic process
in which the returns to educational inputs vary across stages of the life cycle (Todd and
Wolpin, 2003; Cunha et al., 2010). Further, the impacts of adverse weather on human capital
may also differ by the age of the child (Shah and Steinberg, 2017; Stowell et al., 2022). It is
also possible that parental investment in education may respond to lagged weather shocks
— for example, parents may spend on after-school tutoring or move their children to schools
with better resources. It is thus unclear whether short-term adverse weather shocks translate
into persistent declines in human capital or whether parental responses can mitigate these
damages. Understanding the effects of climate change on human capital therefore requires
analysis that considers weather exposure and educational investment in a dynamic, long-term
setting.

In this paper, we analyze how sustained heat exposure influences human capital formation
in a large developing economy. Given the pivotal role of human capital in shaping economic
growth as well as social outcomes, understanding its vulnerability to climate change is of
critical policy importance. We build on prior studies documenting impacts of year-to-year

weather shocks on human capital and academic performance by exploring the dynamic im-



pacts of temperature over the life cycle of schooling.!

We present a simple model that describes the dynamics of human capital formation,
extending the standard human capital production function to incorporate temperature as
an input. Temperature can influence human capital through both physiological and income
related channels (Dell et al., 2012; Burke et al., 2015; Garg et al., 2020). In each period,
households decide how much to invest in a child’s education. Exposure to past warming may
alter the marginal productivity of these investments: it could reduce returns if it impairs the
child’s ability to benefit from schooling, or increase returns if additional investment helps the
child recover from setbacks. As a result, the cumulative impact of long-term climate change
can differ markedly from impacts of short-term, one-off weather shocks. This theoretical
ambiguity motivates our empirical analysis of the relationship between heat exposure over
the life cycle, educational investment and human capital outcomes.

We build a district-level panel dataset on grade completion by birth cohort across primary,
middle, and secondary schooling for individuals born between 1952 and 1996 in India. We
link these educational outcomes to district-level temperature and precipitation measures
derived from high-resolution reanalysis daily weather data. Our empirical strategy employs a
standard panel fixed effects model, exploiting variation in heat exposure experienced by each
cohort during their years of schooling. Specifically, we include district and region-by-birth
cohort fixed effects to control for time-invariant district characteristics and region-specific
trends. Our identification relies on the assumption — in line with the recent climate—
economy literature (Dell et al., 2014) — that conditional on these controls, fluctuations in
heat exposure are quasi-random and uncorrelated with other determinants of educational
attainment.

We find that contemporaneous heat exposure during school years has negative impacts

! Adverse impacts have been documented for rainfall and temperature shocks during early life — from
the period in utero and early childhood (Maccini and Yang, 2009; Fishman et al., 2019; Hu and Li, 2019;
Adhvaryu et al., 2024) — as well as for contemporaneous shocks during school- or college-age years (Shah
and Steinberg, 2017; Graff Zivin et al., 2018; Garg et al., 2020; Graff Zivin et al., 2020; Zimmermann, 2020;
Park, 2022; Park et al., 2021) in developed and developing country settings.



on educational attainment at all three schooling levels. These impacts are economically
meaningful: an additional hundred degree days above 24°C during a school year — which
corresponds approximately to a 10% increase in heat exposure — reduces the probability
that a cohort completes primary school by 2.3 percent. The corresponding effects for middle
and secondary school completion are 3.3 and 3.8 percent, respectively. These results align
with prior literature documenting negative effects of adverse weather on human capital, but
fail to account for potential dynamic responses that could alter the long-term impacts of
heat exposure.

We next examine dynamic effects by estimating a model that considers heat exposure over
a child’s life cycle, starting from the period in utero up to age 16. We find that the adverse
impacts of heat exposure on grade completion are primarily attributable to contemporaneous
exposure during school years. In contrast, heat exposure in early life (in utero to age 5) and
in the years preceding a particular level of schooling do not have persistent adverse effects.
Children who experience greater heat exposure during the in utero period and in their first
five years of life are no less likely to finish primary school, and heat exposure during primary
school years does not affect middle school completion. Notably, heat exposure in early life
is associated with positive effects on middle and secondary school completion. Overall, the
evidence suggests that while recent heat exposure adversely impacts human capital, the
effects of more distant, lagged exposure are smaller, or even positive.

In addition to grade completion, we examine effects of heat exposure over the life cycle on
a more intermediate outcome: school enrollment. Greater heat exposure is associated with
a decline in school enrollment. These adverse impacts carry over to subsequent grades of
schooling, thus highlighting the dynamic nature of human capital accumulation — adverse
impacts in early stages of a child’s life may compound in later stages, if unmitigated. At
first glance, this finding appears to be at odds with our results on grade completion being
unaffected by heat exposure in early life and in the years preceding a particular level of

schooling. However, these patterns are reconciled once we consider parental responses to



heat exposure.

Using nationally representative household survey data on educational expenditures for
school-age individuals spanning four decades, we find that early life heat exposure leads
to greater educational expenditures, and this pattern holds through to secondary school.
Households also increase educational spending in response to contemporaneous heat expo-
sure. Parents are thus responding actively to greater heat exposure by investing more in
their children’s education, particularly when their children are exposed to heat in early life
and during school years. Taken together, our results suggest that educational investment
is able to mitigate the adverse impacts of heat exposure, particularly when shocks occur
early in a child’s life, by allowing parents more time to make compensatory educational
investments throughout the life cycle. However, contemporaneous heat exposure continues
to reduce educational attainment despite households increasing educational spending, which
implies that these efforts are unable to fully mitigate damages from heat.

This paper makes four contributions to the literature on the causal impacts of tem-
perature on education-related outcomes. First, to shed light on the dynamic relationship
between climate-driven heat exposure and human capital accumulation, we explicitly model
temperature as an input in the production of human capital, allowing for both short-run
and long-run effects of temperature on human capital as well as dynamic responses through
parental investment. Shah and Steinberg (2017) use a similar approach to examine impacts
of favorable rainfall shocks on human capital. Their approach differs from ours in that they
assume a direct link between rainfall and wages, and therefore limit the effect of rainfall on
human capital accumulation through exogenous changes in income. Our approach allows
temperature to affect human capital both directly (e.g. through physiological effects) and
indirectly (e.g. through parental income). Further, Shah and Steinberg (2017) examine
favorable income shocks and focus on the opportunity cost of schooling by differentiating
income and substitution effects. Our empirical setting centers around adverse heat exposure

and focuses on intertemporal dynamics — in particular, we explore whether heat-driven set-



backs in schooling in the short-run persist as permanent setbacks in the long-run, as well as
investigate the role of parental investments in mitigating damages from heat.

Second, our empirical analysis directly links heat exposure, parental responses, and
schooling outcomes to offer new insights into how human capital accumulation responds to
sustained, climate-driven warming in a long-term, dynamic setting. Prior studies have typi-
cally focused on a single, transitory shock — for example, Fishman et al. (2019) look at the
impact of higher temperatures in utero on higher education attainment — or have exploited
day-to-day or year-to-year variation in temperature exposure (Graff Zivin et al., 2018; Garg
et al., 2020; Graff Zivin et al., 2020; Park, 2022). In contrast, our analysis considers heat ex-
posure over the entire life cycle. This approach enables us to capture cumulative effects and
identify critical windows of vulnerability. Further, by explicitly examining impacts on school
enrollment and parental responses, we shed light on potential compounding or mitigating
factors through which long-term heat exposure influences human capital formation.

Third, we focus on a critical indicator of educational attainment: school completion.
Much of the existing literature has assessed impacts of temperature on intermediate learning
outcomes such as test scores (Cho, 2017; Graff Zivin et al., 2018; Garg et al., 2020; Graff Zivin
et al., 2020; Park et al., 2020; Park, 2022). While test scores reflect cognitive achievement,
they capture academic performance only at specific points in time, and negative effects
may dissipate if students are able to catch up, possibly through physiological adaptation
and /or greater compensatory investment by parents. However, if students fall too far behind,
they may be forced to repeat a grade or drop out, resulting in a permanent educational
setback with potentially far-reaching consequences. By focusing on grade completion as our
primary outcome, we capture the cumulative and potentially irreversible impacts of climate-
related disruptions. Given the strong links between educational attainment, labor market
participation and lifetime earnings, school completion is a critical metric for evaluating the
long-term policy implications of climate change on human capital development.

Fourth, we conduct our long-term analysis in the context of a large developing econ-



omy. While much of the literature focuses on developed economies, often due to better
data availability, impacts in LMICs are likely to differ substantially. In these settings, large
segments of the population rely on rain-fed agriculture, making them particularly vulner-
able to climate risks. Under this scenario, the agricultural income channel, in addition to
the physiological channel, can influence the relationship between heat exposure and human
capital. Additionally, limited social protection and restricted access to adaptive mechanisms
such as cooling infrastructure exacerbate these vulnerabilities. We address data limitations
by leveraging administrative census data covering more than forty birth cohorts who have
completed schooling in India, combined with high-resolution, high-frequency weather data.
This novel dataset allows us to examine nonlinear effects of heat exposure over a child’s life
cycle on educational attainment, offering new insights into the long-term consequences of
climate change in resource-constrained environments.

The rest of the paper is organized as follows. Section 2 outlines a model that describes the
different channels through which climate change may impact human capital accumulation.
Section 3 describes the data sources. Section 4 outlines the empirical strategy. Section 5

describes results and Section 6 concludes.

2 Model

This section presents a model for formalizing different channels through which tempera-
ture affects human capital. The model separates the direct effect of current weather from
longer-term effects of permanent climate. Following the literature, we model human capital
formation as a dynamic process where human capital in any period depends on past human
capital, climate events during that period, and parental inputs (Todd and Wolpin, 2003;
Cunha et al., 2010). Persistent climate change therefore affects human capital through two
channels: a contemporaneous effect of weather and a permanent effect where the amount of

human capital that a child enters each period with can depend on climate.



2.1 Setup

We denote A; as a continuous measure of human capital at the end of period t. We consider
three distinct periods of human capital accumulation: ¢ = 0 is the period before a child
enters school, t = 1 is the time of primary school and ¢ = 2 is the time of secondary school.
Temperature in a given period consists of both permanent climate and an annual disturbance.
Following convention, we refer to the permanent part of a temperature realization as climate
and the annual disturbance as weather. Specifically, we denote an annual temperature
realization as w; = W + ¢;, where w is climate and ¢; is weather. Households earn income
in period ¢ which is temperature dependent, i.e. y; = hy(w + ¢;). The function h is indexed
by t to account for adaptation where the effect of temperature on income could decline over
time.

Parents choose their educational investment z; at the start of each period after observing
all stochastic variables from previous periods, but before observing their realizations in the
current period. This amounts to an optimization problem where parents choose investment
to maximize lifetime utility. As a result of this maximization, the optimized educational
investment can be written as a function of lagged income and human capital at the beginning

of the period: z; = fi(yi—1, Ai—1).

2.2 The determinants of human capital

Human capital in period ¢ is a function of human capital at the end of the previous period
(A;_1), investment in the current period (z;), and temperature (w;); we denote this as A; =
gt(Ai—1, x4, wy). Investment could be expenses on after-school tutoring, learning materials,
or the time parents spend studying with their children.

In this setup, human capital at the end of primary school is written as:

A1 = g1 (Ao, f1(W0, Ao), w1) = g1 (Ao, f1(ho(w + ¢o), Ao), w1) (1)



Human capital at the end of primary school depends on the amount of human capital that
a student enters with, parental investment during primary school, and current temperature.

Parental investment depends on income and the amount of human capital. The sign of

Oft
0Ai_1

plays a key role in determining how climate affects human capital in the long-run. There

are two possibilities. Parents could increase investment in an attempt to overcome deficits
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in human capital, i.e. < 0. Parents would choose to do this if current investments
are substitutes for the stock of past human capital. Alternatively, parents could invest

less in children that have faced adverse weather shocks, which would be the case if current

Oft

investments are complements to the stock of past human capital. This would imply 7 4 > 0.
Human capital at the end of secondary school is therefore:
Az = g2 (As, fa(yr, A1), w2) = ga (Ar, fa(ha (@ + ¢1), A1), wa) (2)

2.3 Short-run effects of weather on human capital

Many studies focus on the contemporaneous effect of weather on human capital. This effect

at the end of secondary school is

04, _ 892 _ 392 (3)
8¢2 3¢2 31112

Notably, this only captures the direct effect of current weather on human capital. For
instance, higher temperatures can impair learning — children may not attend school or
may encounter learning disruptions while at school (Park et al., 2020, 2021). More directly,
extreme heat negatively affects concentration and cognitive function, subsequently lowering
test scores (Cho, 2017; Graff Zivin et al., 2018; Garg et al., 2020; Graff Zivin et al., 2020).
Higher temperatures may also affect students’ time allocation and amount of time spent
studying (Alberto et al., 2021). While access to air conditioning or other cooling technologies

may offset the adverse impacts of higher temperatures on academic performance (Park et al.,



2020), current access to such adaptation technologies in LMICs remains limited (Pavanello
et al., 2021).

The literature generally finds that ‘3%22 < 0. Importantly, this short-run effect does not
include the parental investment channel or the long-run effects of climate from the carryover
of human capital across periods. Our key contribution is to integrate long-run data on

educational attainment and parental investment in order to move beyond this short-run

parameter.

2.4 Long-run effects of climate on human capital

Climate produces different long-run effects for two reasons. First, human capital accumula-
tion is dynamic, and climate impacts can accumulate over time if they cause students to enter
future grades with lower levels of human capital. Second, parents invest in their children’s
education over time. The short-term effects of weather could be mitigated (or exacerbated)
by changes in parental investment in the long-run.

The long-run effect of climate on human capital at the end of secondary school is

8A2 . (992 8141 (992 81’2% i 81’2 8A1 i 892
ow a 8A1 ow 8562 8y1 ow 0A1 ow 8w2

Rearranging terms,

8A2 o 892 8141 1 892 61’2% n 892 81'2 8A1 i agg (5>
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Three terms drive the difference between long- and short-run effects:

1 Og2 DA .

5 5o This is the persistent effect of climate on human capital accumulation over
1 Ow

time. Higher temperatures worsen human capital outcomes during earlier periods, and
this carries over into later periods because of the dynamic accumulation of human
capital. This term is negative i.e., it pushes the long-term effect to be more negative

relative to the short-term effect.
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9. 292 922 9u1. g ig the income effect through parental investment. This term could have
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either sign. It will be negative if investment is a normal good and higher temperatures
under climate change lower income. Adverse weather shocks have been shown to nega-
tively impact agricultural incomes (Schlenker and Roberts, 2009; Taraz, 2018), inhibit
labor reallocation to non-agriculture (Liu et al., 2023), and reduce labor productivity
(Somanathan et al., 2021). Early life shocks generate larger long-run effects when in-
come is more sensitive to those shocks (Maccini and Yang, 2009; Shah and Steinberg,
2017; Fishman et al., 2019; Hu and Li, 2019; Adhvaryu et al., 2024). Experimental
evidence from unconditional cash transfers in the United States shows that recipients
spend more time on activities that enrich children’s learning (Magnuson et al., 2024),

which translates to g—Zf > 0.

992 922 041 . Thig term captures whether current parental investment offsets or exac-

erbates past climate-related damages to learning. If climate change harms learning

during primary school, then %

— < 0. Complementarity between learning during pri-
mary school and parental investment during secondary school would mean that g—x
is positive. For example, Cunha et al. (2010) find complementarity between earlier
cognitive skill development and later educational investment for low-income children
in the United States. If the same were true in the Indian setting, then the long-term

adverse effect of climate change would be greater than the short-term effect because

it is less productive for parents to invest in children who have fallen behind during

5

54 is negative — this would happen if parental

primary school. An alternative is that

investment serves as a tool to offset past learning losses.

Research has found that households do adjust their investment in response to one-off
weather shocks, and these adjustments can either mitigate or intensify the impact of
weather shocks on human capital. Wu et al. (2023) find that high rainfall in the year of
birth increases long-term human capital measures for girls but not for boys in China.

The authors find that this is driven by a compensatory mechanism: boys in China

11



are typically breastfed longer than girls, but in high-rainfall years, mothers work fewer
agricultural hours and breastfeed female children more than they do in lower rainfall
years. More broadly, there is a large literature discussing whether parents reinforce
differences in human capital among their children, by investing resources in the child
with higher human capital (Akee et al., 2018; Becker and Tomes, 1976; Behrman et al.,
1994; Frijters et al., 2009; Rosenzweig and Zhang, 2009) or whether parents instead
compensate for differences, by investing more in the child with lower human capital
(Almond and Mazumder, 2013; Behrman et al., 1982; Fan and Porter, 2020; Halla and
Zweimiiller, 2014; Leight, 2017).

2.5 Links with the empirical analysis

This model helps to clarify three mechanisms that we aim to capture in the empirical anal-
ysis: the dynamics of learning, the effects of longer-term income, and the role of parental
investment in mitigating climate damages. Empirical research on weather and learning tends
to focus on the contemporaneous effect of heat on student performance or the longer-term
impacts of early life shocks. Neither of these parameters identifies how climate change affects
human capital in the long run. The contemporaneous effect (%) only captures direct cog-
nitive impacts. There is some evidence that individuals can physiologically adapt to higher
temperatures in the presence of sustained heat (Sexton et al., 2022), and this heat acclima-

tization can occur within as little as a week. If physiological adaptation to sustained high

temperatures is possible, then we might expect the impact of persistent high temperatures to

Jgt
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be smaller than contemporaneous effects. The effect of past shocks ( ) picks up some of
the dynamic channels, but only identifies the effect of a single weather event, not sustained
climate change. Our empirical framework instead seeks to capture all three channels by

incorporating data on the distribution of weather throughout a child’s life cycle.
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3 Data

Our empirical analysis combines administrative Census data on educational attainment and
school enrollment, nationally representative household surveys on educational investment

and hourly reanalysis weather data.

3.1 Educational Attainment

Grade completion data comes from three waves of the Indian Census: 1991, 2001, and 2011.
We use publicly available Census tables that report educational attainment by five-year birth
cohorts (ages 5-9, 10-14, ..., 80-+) at the district level. For each five-year birth cohort bin, the
tables report total counts of individuals as well as counts of individuals by their highest level
of education. We focus on educational outcomes associated with completing primary, middle
and secondary school, and calculate cumulative shares as outcome variables. Specifically, our
primary outcome is the proportion of each five-year birth cohort that has completed at least
primary, middle, or secondary education.

We arrive at a district-level panel of birth cohorts by constructing our sample as follows.
First, district boundaries in India vary across the three Census waves. To account for shifting
boundaries, we follow Liu et al. (2023) and create district units that are consistent over
our analysis time frame. This gives rise to 441 districts, illustrated in Appendix Figure
A.1. Second, the partition of India in 1947 led to high levels of migration and introduced
compositional changes in average schooling levels in the population (Bharadwaj et al., 2015).
To avoid any discontinuities in cohort education levels set in motion by the partition, we
restrict our sample to individuals born after 1950. Third, the same birth cohort is often
observed across multiple Census waves as they age. For example, the cohort aged 5 to 9 in
1991 corresponds to the cohort aged 15 to 19 in 2001 and the cohort aged 25 to 29 in 2011. If
a cohort is observed too early, its members may have yet to complete a given education level

— this is an important consideration in the Indian context where grade repetition is common
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and the pace of grade progression varies across regions (Ahsan et al., 2018). Conversely, if
a cohort is observed too late, compositional changes resulting from mortality or migration
may distort “true” grade completion rates of individuals born in a particular locality. To
minimize these issues, we use data from the earliest census round by which a five-year birth
cohort is likely to have completed a certain level of schooling, allowing for a buffer period.
Specifically, we use the earliest Census wave in which the youngest member of a five-year
birth cohort is at least five years older than the typical completion age for each schooling
level (i.e., age 15 for primary, age 19 for middle, and age 21 for secondary).

Our sample comprises five-year birth cohorts born between 1952 and 1996. Figure 1
presents grade completion rates for these cohorts. We see steady increases in grade comple-
tion as we move from the oldest to the youngest cohorts across all three schooling levels,

consistent with an upward trend in educational attainment over time in India.

3.2 School Enrollment

School enrollment data comes from three waves of the Indian Census: 1991, 2001, and
2011. We use publicly available Census tables that report district-level counts of individuals
attending educational institutions. This data is presented at a single-cohort frequency for
individuals between the ages of 5 to 19, and at a five-year frequency thereafter. We focus
on primary, middle, or secondary school age children (i.e. between the ages of 7 to 16) at
the time of each Census wave, and calculate shares of children enrolled in school as outcome

variables.

3.3 Educational Investment

Educational investment data comes from five waves of the Household Social Consumption:

Education Module (Schedule 25.2) conducted as part of India’s National Sample Survey
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(NSS).? We rely on questions about education expenditure for individuals who are currently
enrolled in primary school or higher. We focus on primary, middle, or secondary school
age children (i.e. between the ages of 7 to 16) at the time of each survey wave. For each
enrolled child, we compute total education expenditure as the sum spent on course fees,
books, stationery and uniforms, transportation, private coaching, and other miscellaneous
items. For consistency, we harmonize district of residence in the survey to the same set of

district boundaries used in the Census data.

3.4 Weather

Hourly temperature and precipitation data come from the ERA5 Climate Reanalysis dataset
(ECMWF, 2023). This dataset extends from 1940 to the present and provides climate
variables at a spatial resolution of a 0.25-degree latitude-longitude grid.

We use temperature data that is available at an hourly level and extract four points per
day (at six-hour intervals), after which we construct a daily average temperature measure
for each grid square. We calculate the area-weighted average of all grid squares within the
boundary of a given district to aggregate this measure at the district level. We then use the
district-level daily temperature data to construct our primary measure of heat exposure —

degree days with a threshold of 24°C, defined as:
DD*(Tymy) = Y (Tamy — 24) % 1Ty > 24),

where Ty, is the average temperature on day d, month m, and year y.> These daily values
of degree days are summed over a 12-month period to arrive at an annual degree day measure

that can be paired with birth cohorts. Census data is gathered in February of each census

2The five survey rounds and corresponding survey years are as follows: 42nd (1986-1987), 52nd (1995-
1996), 64th (2007-2008), 71st (2014) and 75th (2017-2018).

3The average diurnal range, or difference between daily maximum temperature and daily minimum tem-
perature in India is 12°C (Rai et al., 2012). Therefore, a day with an average daily temperature of 24°C
roughly corresponds to a day with daily maximum temperature of 30°C.
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year, so we sum up daily values from March of the previous year through February of the
current year.

Earlier literature has found that the relationship between human capital and temperature
is nonlinear, with damages being largest when temperatures are especially high (Hu and Li,
2019; Garg et al., 2020; Park et al., 2020, 2021). Daily temperature data in conjunction
with a degree day measure allow us to precisely capture this nonlinearity in a parsimonious
manner. Our choice of 24°C as a threshold is derived from analysis where we use a flexible
temperature bin specification; we describe this in detail in Section 4.1.

We use precipitation data that has been aggregated from hourly time steps to the monthly
level. As before, we sum up monthly values of precipitation over a 12-month period (lagged
March to current February) to arrive at an annual precipitation measure that can be paired
with birth cohorts.

Figure 2 presents long-term climate trends in two key variables: degree days above 24°C
(left axis) and precipitation in meters (right axis), with data aggregated into three-year
averages between 1950 and 2020. Average exposure to degree days above 24°C has generally
increased over time, with a few exceptions. This increase in heat exposure is visibly sharper
starting from the early 2000s, consistent with an increased pace of warming in recent decades.
In contrast, precipitation demonstrates notable variability, with fluctuations but no clear
monotonic trend over the seventy-year horizon.

We construct measures that capture contemporaneous exposure to heat and precipitation
during school years, namely ages 6 to 10 for primary school, ages 11 to 14 for middle school,
and ages 15 to 16 for secondary school. For example, when evaluating primary school
completion for a birth cohort born in 1989, we construct measures of average annual weather
from 1995 (age 6) to 1999 (age 10).* To further explore dynamic effects, we construct a full

set of variables that correspond to distinct stages spanning a child’s life cycle — early life (in

4To match to five-year birth cohort bins in the educational attainment data, we focus on the middle
cohort within each bin and use the middle cohort’s school years as the match key. For example, for the
1987-1991 birth cohort, we focus on the middle cohort born in 1989.
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utero to age 5), primary school (age 6 to 10), middle school (age 11 to 14), and secondary
school (age 15 to 16).

We merge the educational attainment, school enrollment and educational investment data
with temperature and precipitation variables to create our three analysis data sets. Appendix
Table A.1 presents summary statistics of weather variables and educational attainment for
each five-year birth cohort in the analysis sample, which consists of 9 five-year cohorts born
between 1952 to 1996 across 425 districts.” Appendix Table A.2 reports summary statistics of
weather variables and educational investment (panel A) and enrollment (panel B) separately

for each age group in the analysis sample.

4 Empirical Strategy

4.1 Educational Attainment

To estimate the impact of heat exposure on educational attainment, we estimate the following

panel regression:
Yeir = Bf(Tjr) + yPrecipitation., + o + a; + aer + €cjr, (6)

where Y., denotes the log share of individuals in birth cohort ¢, district j and region r who
have completed at least a given schooling level (primary, middle or secondary). Birth cohort
c is defined as a five-year bin centered around individuals born in year c.°

We first consider contemporaneous exposure to heat and precipitation during school years.
Specifically, for primary school completion, f(7.;.) represents the average number of degree
days above 24°C, scaled by 100, experienced by individuals in cohort ¢ while they are of pri-

mary school age (ages 6 to 10).” In this specification, 3 can be interpreted as the percentage

514 districts from Daman and Diu and Jammu and Kashmir are dropped due to missing Census data
and 2 districts from Andaman and Nicobar Islands are dropped due to missing weather data. This leads to
a reduction in the number of districts from 441 (as illustrated in Appendix Figure A.1) to 425.

6This captures individuals born between years ¢ — 2 to ¢ + 2.

7 Age-appropriate exposure windows are 11 to 14 for middle school, and 15 to 16 for secondary school.
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change in the share of individuals completing at least primary school associated with an ad-
ditional hundred degree days above 24°C during school years. The variable Precipitation.;,
captures average total precipitation over the same period, standardized using district-specific
historical means and standard deviations from 1941 to 1950.

We arrive at a degree day threshold of 24°C using a data-driven approach. We estimate
Equation 6 with f(7;.) specified as a vector of temperature bins with 3°C intervals, spanning
from below 15°C to above 33°C.° Daily average temperature realizations are distributed
across these bins. Appendix Figure A.2 presents regression results for each bin on schooling
outcomes at primary, middle and secondary school, with 21-24°C as the reference bin. We
find that higher temperature exposure significantly reduces grade completion across all three
levels of schooling, with effects being particularly pronounced for middle and secondary
school completion. Moreover, the relationship is approximately linear above 24°C, motivating
our selection of this threshold.

The term «, represents a vector of birth cohort fixed effects, which control for variation
in climate or educational attainment over time. The term «; represents a vector of district
fixed effects, which control for time-invariant district-specific factors that may be correlated
with climate or educational outcomes. The term «., controls for time-varying region-specific
effects: either a vector of region-specific linear birth cohort trends or a set of region-birth
cohort fixed effects. This term captures unobserved factors that vary across birth cohorts at
the regional level, which may be correlated with climate or educational outcomes. Finally,
€cjr 15 an idiosyncratic error term. We cluster our standard errors in two ways. First, we
cluster the errors at the district level to allow for arbitrary serial correlation over time within
a district. Second, we report Conley standard errors to allow for spatial correlation up to
500 km as well as arbitrary serial correlation (Conley, 1999).

The identifying assumption underlying this panel regression is that, conditional on district

8We select this reference period as it pre-dates the first birth cohort in our analysis (1952) and is the earliest
data available from ERA5. Results are robust to using a reference period of 30 years, which corresponds to
a district’s “climate normal.”

9There are eight bins in total: below 15°C, 15°C-18°C, 18°C-21°C, ..., 30°C-33°C, and over 33°C.
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and region-birth cohort fixed effects, residual variation in the heat exposure and precipitation
measures is as good as random. As an example, suppose birth cohorts a and b in a given
district experience a large difference in heat exposure. Identification compares the difference
in outcomes between birth cohorts a and b in that district with a difference in outcomes
between birth cohorts a and b in another district in the same region who experience similar
heat exposure. The randomness of the residual variation in our heat exposure variable
allows us to infer a causal interpretation of 5 as the effect of heat exposure on educational
attainment.

Next, we consider cumulative exposure to heat and precipitation over the educational life
cycle of a child, starting from the period in utero. For example, when looking at primary
school completion, f(71.;) captures both the average number of degree days above 24 °C
during early life years (in which individuals born in year ¢ are in utero to age 5), as well as
years in which they are of primary school age (age 6 to 10).!9 As described in Section 2,
predictions for the sign of g are theoretically ambiguous — it depends on the dynamics of
learning and the carryover of human capital across periods, the effects of long-term income

and investment in educational inputs in response to heat exposure over the life cycle.

4.2 Educational Investment

To estimate the impact of heat exposure on educational investment, we estimate a regression

of the form:

Yiejrt = Bf (Tejre) + yPrecipitatione,. + o + aj + ap + €icjrt, (7)

where Y.+ denotes the inverse hyperbolic sine (asinh) transformation of educational invest-
ment for child ¢ of age ¢ in district j, region r and NSS survey wave t. We consider cumulative
exposure to heat and precipitation over the child’s educational life cycle, starting from the

period in utero. For example, for children of primary school age (ages 6 to 10 at the time

10We consider cumulative exposure between the period in utero to age 5, ages 6 to 10 and ages 11 to 14
when we look at middle school completion, and further include exposure between ages 15 to 16 when we
look at secondary school completion.
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of survey), f(T.;r+) consists of two terms: the average annual number of degree days above
24°C experienced from in utero through age 5, and during primary school years.!!

The terms o, and «; represent a vector of age and district fixed effects respectively,
controlling for time-invariant age-specific or district-specific factors that may be correlated
with climate or educational investment. The term «,, represents a vector of region-NSS year
of survey fixed effects, capturing unobserved factors that vary across survey waves at the
regional level and may be correlated with climate or educational investment. Finally, €;cjr
is an idiosyncratic error term. As before, we present both clustered and Conley standard

eIrors.

4.3 School Enrollment

To estimate the impact of heat exposure on school enrollment, we estimate a similar regres-

sion of the form:
Yejrt = Bf (Lejre) + yPrecipitationgy + a + o + oy + €cjrr, (8)

where Y,;,; denotes the log share of children of age ¢ in district j and region r in census year
t who are enrolled in school. As in Section 4.2, we consider cumulative exposure to heat and

precipitation over the life cycle starting from the period in utero.'?

5 Results

We begin by ascertaining whether there remains sufficient variation in our heat exposure
measure after accounting for the full set of fixed effects included in the specifications described

in Section 4. Table 1 describes residual variation in heat exposure — that is, the average

HSimilarly, when looking at children of middle school age (i.e. ages 11 to 14 at the time of survey),
f(T¢jre) consists of three terms that capture the average annual number of degree days above 24 °C during
early life years (in utero to age 5), primary school years (age 6 to 10) and during the years in which they are
in middle school.

12WWe truncate our contemporaneous heat exposure measure to end the year before the student is observed
in the Census. For example, heat exposure during primary school years for eight-year-old children spans
ages six and seven.
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annual number of degree days above 24°C experienced during primary (panel A), middle
(panel B) and secondary school (panel C), after taking out district (row 1) and cohort fixed
effects (row 2), region-cohort trends (row 3) and region-cohort fixed effects (row 4). Column
1 reports standard deviations of the residuals, and columns 2 to 5 report the proportion of
observations that have residuals with absolute values exceeding 20, 40, 60 or 80 degree days
respectively. Evidence presented in Table 1 suggests that there remains substantial variation
in heat exposure after accounting for the full set of fixed effects. Across all three panels,
at least 50% of observations have residuals with absolute values exceeding 20 degree days,
which corresponds approximately to a 2% increase in heat exposure during a school year.
We now examine implications for educational attainment. Specifically, we estimate the
relationship between contemporaneous heat exposure and grade completion using the spec-
ification in Equation 6, where f(T.;) captures heat exposure during the years in which

individuals are of school age. In terms of our model, this estimate informs us about the

0AL

or We report results in Table 2. For each outcome, the

short-run effect of weather, i.e.
first column controls for region-cohort trends, while the second column controls for region-
by-cohort fixed effects.

We find that greater heat exposure during school years significantly reduces grade com-
pletion across all levels of schooling. An increase in contemporaneous heat exposure during
school years — as measured by a hundred degree day increase — results in a 2.3% decline in
primary school completion (column 2), a 3.3% decline in middle school completion (column
4) and a 3.8% decline in secondary school completion (column 6). To put these figures into
perspective, annual mean exposure to degree days above 24°C is close to 1000 in our sample
(as summarized in Appendix Table A.1). This implies that an approximate 10% increase
in heat exposure during a school year leads to a 2-4% reduction in grade completion. In
contrast, the effects of precipitation on grade completion are generally weaker: we observe a

small, marginally significant positive effect on middle school completion, and no statistically

significant effect on primary or secondary school completion.
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To assess the robustness of these findings, we carry out three additional checks. First, we
run our specification with outcome variables in levels rather than logs. As shown in Appendix
Table A.3, results remain similar in both magnitude and precision to those reported in Table
2. Second, we explore sensitivity of our estimates to the choice of degree day threshold by
varying it by +/ — 3°C from the baseline of 24°C. Appendix Figure A.4 plots coefficient
estimates across these threshold values ranging from 21°C to 27°C. The estimated effects are
remarkably stable across these thresholds for all three levels of schooling, suggesting that our
main findings are not driven by the specific threshold choice of 24°C. Third, demographic
changes driven by migration could bias our estimates if selection into the sample is correlated
with education levels.'® To test for selection, we examine how cohort size by education level
responds to heat exposure in Appendix Table A.4.'* We find that individuals with at least
middle and secondary schooling are more likely to be observed in a district with greater heat
exposure, which suggests that the direction of sample selection is positive. Our reduced-
form estimates of the impacts of heat exposure on educational attainment are thus plausible
under-estimates of the true effect and can be interpreted as a conservative lower bound.

We next expand our analysis to a dynamic framework that considers heat exposure over
a child’s life cycle — starting from the period in utero — on grade completion. We use the
specification in Equation 6 with f(7¢;,) capturing heat exposure both during early life years

as well as years in which individuals are of school age. These effects are meant to capture

13For example, if higher-educated individuals are more likely to out-migrate in response to heat exposure,
the remaining observed population in a district would comprise of fewer educated individuals, and the
estimated effect of heat exposure on educational attainment would be an overestimate of the true effect.
Alternatively, lower-educated individuals may be particularly vulnerable to heat since they are more likely
to engage in agriculture and have limited access to adaptation mechanisms e.g. cooling technologies. If lower-
educated individuals are more likely to out-migrate in response to heat exposure, the remaining observed
population in a district would comprise more educated individuals and the estimated effect of heat exposure
on educational attainment would an underestimate of the true effect.

For each five-year birth cohort born between 1952 and 1971, we observe population size by education
level across the three Census waves: 1991, 2001, and 2011. In order to test whether cohort size changes in
response to heat exposure vary by education levels, we construct our dependent variable to be the share of
a cohort in a census year that has completed a certain grade. We regress this measure on heat exposure
and precipitation in the preceding ten years with cohort, district, and region-by-year fixed effects. In this
setup, the estimated effects capture whether a segment of the cohort — for example, those who have at least
completed middle school — experiences population change at a differential rate relative to the entire cohort.
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5. Table 3 reports coefficient

a shift in the distribution of weather in the model, i.e.
estimates, which are also illustrated in Figure 3.

Our results indicate that the adverse effects of heat exposure on grade completion are
primarily attributable to contemporaneous heat exposure during school years. Heat exposure
in early life appears to have no significant impact on primary school completion (coefficient
0.007, p-value = 0.573). The magnitude of the coefficient for heat exposure during primary
school years in Table 3 column 2 is nearly identical to that in Table 2 column 2, and an
F-test of equality of coefficients across the two models yields a p-value of 0.318. Similarly,
heat exposure during primary school years does not significantly affect middle school com-
pletion (coefficient -0.003, p-value = 0.786), and the coefficients for heat exposure during
middle school years are statistically indistinguishable across the two models (p-value=0.373).
For secondary school completion, heat exposure during primary school years is insignificant
(coefficient 0.015, p-value = 0.318), whereas heat exposure during middle school years has a
significant negative impact (coefficient -0.025, p-value= 0.030).

Interestingly, we find that heat exposure in early life is positively associated with grade
completion, particularly for middle (coefficient 0.026, p-value = 0.017) and secondary school
(coefficient 0.055, p-value = 0.000). A possible explanation is that parents make compen-
satory educational investments in response to early-life heat shocks (Yi et al., 2015). Our
model in Section 2 outlines how long-run effects of heat exposure on educational attainment
depend crucially on how parental investment responds to climate shocks.

We empirically investigate parental responses to heat exposure over the life cycle using
nationally representative household survey data from India’s National Sample Survey. More
specifically, we explore how households’ expenditure on education for each child responds
to heat exposure both during early life as well as during years in which individuals are of
school age. We conduct this analysis with all children of primary to secondary school age
(i.e. between the ages of 7 to 16) who are enrolled in school, and present results in Table 4.

Two patterns emerge. First, we find that parental investment in education increases
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in response to greater heat exposure during school years. A hundred degree day increase
in average heat exposure during primary school years leads to a 10.8% increase in total
education expenditure for students enrolled in primary school, with the effect significant at
the 1% level. Heat exposure during middle and secondary school years also leads to increases
in total education expenditure for students enrolled in middle and secondary school, although
effect sizes are smaller at 3.2% and 2.8% respectively. Parents thus respond to greater
contemporaneous heat exposure by increasing educational investment.

Second, we find that educational investment responds substantially to greater heat ex-
posure in early life. A hundred degree day increase in average heat exposure during early
life increases total education expenditure by 11.6%, 11.8%, and 7.3% during primary, mid-
dle, and secondary school years respectively. Interestingly, this response is even larger than
responses to heat exposure during contemporaneous school years, in some cases. The mag-
nitude of parental responses is significantly larger for early life heat exposure relative to
contemporaneous heat exposure for middle and secondary schooling, as reflected in p-values
from an F-test of equality of coefficients (reported at the bottom of Table 4). This persis-
tence in increased parental investment in response to early life heat exposure can potentially
explain our earlier finding that heat exposure in early life is positively associated with middle
and secondary school completion (Table 3).

Besides parental responses, another factor that may contribute to the dynamic effects
of heat exposure on educational attainment in Figure 3 is the impact on school enrollment,
which can in turn delay or disrupt subsequent grade completion. We explore how school
enrollment responds to heat exposure over the life cycle using Census data. We conduct this
analysis with all children who are of primary to secondary school age (i.e. between the ages
of 7 to 16) at the time of the Census, and present results in Table 5.

We find that contemporaneous heat exposure results in a decline in school enrollment
across all three levels of schooling: a hundred degree day increase in average heat exposure

during school years reduces the share of individuals enrolled in school by 3 to 5%. Further,
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these effects persist in subsequent educational stages. For example, increased heat exposure
during primary school years not only lowers enrollment at the primary level but also neg-
atively impacts middle school enrollment. A hundred degree day increase in average heat
exposure during primary school corresponds to a 4.6% decline in primary school enrollment
and a 3.3% reduction in middle school enrollment, as shown in Columns 1 and 2. Likewise, a
hundred degree day increase in average heat exposure during middle school results in a 3.2%
decline in middle school enrollment and a 6.2% reduction in secondary school enrollment
(Columns 2 and 3). This persistence may arise due to the dynamic nature of human capital
accumulation described in Section 2: individuals who fall behind or drop out at an earlier
grade are less likely to re-enroll or progress to higher grades, thereby compounding the effects
of prior heat exposure. These findings highlight a second dynamic channel — beyond con-
temporaneous effects — through which heat exposure impacts educational attainment over
time.

Taken together, our results demonstrate that parental investment in education only par-
tially mitigates the adverse effects of heat exposure on grade completion. These compen-
satory investments are most effective when shocks occur early in a child’s life, thus providing
time for parents to offset potential learning losses. However, increased parental investments
during school years do not fully mitigate the detrimental effects of contemporaneous heat
exposure. Parental responses are thus insufficient in fully shielding children from the cumu-

lative detrimental effects of heat exposure experienced throughout the life cycle.

6 Conclusion

Rising temperatures under climate change have significant adverse impacts on a range of
economic outcomes in LMICs. In this paper, we document detrimental long-term impacts
of heat exposure on human capital formation in India, focusing on the dynamic interplay

between weather shocks, educational attainment, and parental investments across the life
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cycle. We find strong evidence that contemporaneous heat exposure significantly reduces
grade completion across primary, middle and secondary schooling. In contrast, we find
limited evidence that heat exposure in early life results in persistent adverse effects on grade
completion. In fact, early-life heat exposure is sometimes associated with higher school
completion rates, likely due to compensatory parental investments in education.

Our findings carry several important implications. They highlight the importance of
studying climate impacts over long time frames, particularly for outcomes that form dy-
namically over time. Our analysis reveals that parents actively respond to both early life
and contemporaneous heat exposure by increasing educational expenditures. These compen-
satory investments are most effective when shocks occur early in a child’s life, as they provide
time for parents to offset potential learning losses, while increased parental investments dur-
ing school years are not able to fully mitigate the detrimental effects of contemporaneous
heat exposure. Moreover, we document that heat exposure reduces school enrollment and
these effects propagate to subsequent grades, revealing the dynamic and compounding nature
of climate impacts on human capital accumulation.

Our findings also highlight the urgent need for policies aimed at protecting vulnerable
children from the cumulative damages of heat exposure under climate change. Potential
policy responses could range from individual-level interventions such as providing financial
support for educational expenses or remedial education programs, to school- and community-
level interventions such as large-scale investment in cooling infrastructure. As the frequency
and severity of heat events continue to rise, mitigating their long-term consequences is central

to promoting equitable and sustainable development across LMICs.
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Figure 1: Educational attainment over time

Figure illustrates grade completion at each level of schooling (primary, middle and secondary) for all
5-year birth cohorts in our sample, with the horizontal axis indicating the birth year of the middle

age cohort within each bin.
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Figure illustrates annual degree days above 24°C on the left axis and annual precipitation in meters

Figure 2: Climate trends over time

on the right axis, binned into 3-year averages between 1950 to 2019.
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Figure 3: Heat exposure over the life cycle & educational attainment

Figure plots coefficient estimates that capture impacts of heat exposure during the life cycle on
grade completion using the panel fixed effects model with region-by-cohort fixed effects (Equation
6). Standard errors are clustered at the district level, and 95% confidence intervals are illustrated

with dashed lines.
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Tables

Table 1: Residual variation in heat exposure

ge e >20 |e|] >40 el >60 |e] >80

Panel A: Degree days > 24°C, age 6 to 10 (1) (2) (3) (4) (5)
District FE 48.3  0.59 0.34 0.19 0.11
District FE + Cohort FE 429  0.60 0.31 0.15 0.07
District FE + Cohort FE + Region-cohort trends 384  0.55 0.26 0.12 0.05
District FE + Region-cohort FE 33.3 0.50 0.21 0.07 0.02
Panel B: Degree days > 24°C, age 11 to 14

District FE 49.2  0.58 0.36 0.20 0.11
District FE + Cohort FE 45.5 0.59 0.31 0.17 0.09
District FE + Cohort FE + Region-cohort trends 43.2 0.56 0.30 0.16 0.08
District FE + Region-cohort FE 37.0  0.53 0.25 0.10 0.04

Panel C: Degree days > 24°C, age 15 to 16

District FE 746  0.69 0.51 0.36 0.26
District FE + Cohort FE 57.1 0.71 0.48 0.27 0.13
District FE + Cohort FE + Region-cohort trends 54.8 0.71 0.46 0.26 0.12
District FE + Region-cohort FE 43.5 0.56 0.30 0.15 0.08

Note: Table summarizes residual variation in our measure of heat exposure during school years
— the annual average number of degree days above 24°C during the years in which individuals
are age-appropriate for the corresponding level of schooling — from a regression with fixed effects
and/or controls. Each row lists the relevant set of fixed effects and controls included in each re-
gression. Column 1 reports the standard deviation of the residuals (denoted as e). Columns 2 to
5 report the proportion of observations that have a residual e with absolute values exceeding 20,
40, 60 or 80 degree days.
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Table 2: Contemporaneous heat exposure & educational attainment

Grade Completion

Primary Middle Secondary
(1) 2) 3) (4) (5) (6)
Degree days > 24°C -0.018 -0.023 -0.030 -0.033 -0.025 -0.038
(0.007)** (0.010)** (0.006)*** (0.007)*** (0.005)*** (0.006)***
[0.013] [0.014] [0.010)*** [0.011]***  [0.011]**  [0.010]***
Precipitation z-score -0.002 0.007 -0.006 0.014 -0.010 -0.013
(0.006) (0.008) (0.004) (0.006)**  (0.005)**  (0.006)**
[0.010] [0.012] [0.007] [0.008]* [0.009] [0.009]
Region-cohort trends Y N Y N Y N
Region-cohort FE N Y N Y N Y
Dep. variable mean (in levels) 0.580 0.580 0.405 0.405 0.250 0.250
Observations 3,825 3,825 3,400 3,400 2,975 2,975

Note: Table presents regression estimates of Equation 6, where f(7.;.) captures contemporaneous expo-
sure to heat during school years. More specifically, f(7.;-) captures the annual average number of degree
days above 24°C during the years in which individuals are age-appropriate for the corresponding level of
schooling. The dependent variable is the natural logarithm of the share of individuals in a birth cohort
who have completed at least primary school (columns 1 and 2), middle school (columns 3 and 4) and
secondary school (columns 5 and 6). All columns include controls for precipitation as well as district and
birth cohort fixed effects. We present standard errors clustered by district in parentheses, and Conley
standard errors that allow for spatial correlation up to 500 km and arbitrary serial correlation in brackets.
*p < 0.10, ** p < 0.05, ** p < 0.01
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Table 3: Heat exposure over the life cycle & educational attainment

Grade Completion

Primary Middle Secondary
1) @) 3) (4) 5) (6)
Degree days > 24°C, in utero to age 5 0.005 0.007 0.016 0.026 0.040 0.055
(0.006) (0.008) (0.006)**  (0.008)*** (0.008)*** (0.009)***
[0.011] [0.012] [0.010] [0.011]**  ]0.013]*** [0.013]***
Degree days > 24°C, age 6 to 10 -0.019 -0.025 -0.001 -0.003 0.011 0.015
(0.007)***  (0.009)*** (0.007) (0.008) (0.009) (0.010)
[0.013] [0.014]* [0.012] [0.012] [0.017] [0.015]
Degree days > 24°C, age 11 to 14 -0.029 -0.036 -0.022 -0.025
(0.005)***  (0.006)***  (0.006)*** (0.006)***
[0.010]***  [0.011]*** [0.013]* [0.011]**
Degree days > 24°C, age 15 to 16 -0.029 -0.035
(0.005)***  (0.006)***
[0.010]***  [0.010]***
Region-cohort trends Y N Y N Y N
Region-cohort FE N Y N Y N Y
Dep. variable mean (in levels) 0.580 0.580 0.405 0.405 0.250 0.250
Observations 3,825 3,825 3,400 3,400 2,975 2,975

Note: Table presents regression estimates of Equation 6, where f(7.;.) captures cumulative exposure to heat over
the life cycle. More specifically, f(7;.) is a vector of variables that capture the annual average number of degree
days above 24°C during the years in which individuals are in utero to age 5, ages 6 to 10 etc. The dependent variable
is the natural logarithm of the share of individuals in a birth cohort who have completed at least primary school
(columns 1 and 2), middle school (columns 3 and 4) and secondary school (columns 5 and 6). All columns include
controls for precipitation as well as district and birth cohort fixed effects. We present standard errors clustered by
district in parentheses, and Conley standard errors that allow for spatial correlation up to 500 km and arbitrary
serial correlation in brackets. * p < 0.10, ** p < 0.05, *** p < 0.01



Table 4: Heat exposure over the life cycle & educational investment

Household Expenditure on Education

Primary Middle Secondary
0 2) (3)
Degree days > 24°C, in utero to age 5 0.116 0.118 0.073
(0.023)***  (0.022)***  (0.023)***
[0.034]*** [0.034]***  [0.025]***
Degree days > 24°C, age 6 to 10 0.108 0.042 -0.010
(0.018)***  (0.018)** (0.023)
[0.025]***  ]0.020]** [0.024]
Degree days > 24°C, age 11 to 14 0.032 0.007
(0.012)%** (0.019)
[0.017]* [0.017]
Degree days > 24°C, age 15 to 16 0.028
(0.011)***
[0.012]**
Pval: DD(in utero to age 5) = DD(age 6 to 10) 0.795
Pval: DD(in utero to age 5) = DD(age 11 to 14) 0.000
Pval: DD(in utero to age 5) = DD(age 15 to 16) 0.058
Observations 148,183 151,116 62,595

Note: Table presents regression estimates of Equation 7, where f(7.;-+) captures cumu-
lative exposure to heat over the life cycle. The sample consists of children between the
ages of 7 to 10 (i.e. primary school age) in Column 1, children between the ages of 11
to 14 (i.e. middle school age) in Column 2, and children between the ages of 15 to 16
(i.e. secondary school age) in Column 3. The dependent variable is the inverse hyperbolic
sine (asinh) transformation of total household expenditure on education in Indian rupees.
All columns include controls for precipitation as well as age, district and region x year of
survey fixed effects. We present standard errors clustered by district in parentheses, and
Conley standard errors that allow for spatial correlation up to 500 km and arbitrary serial

correlation in brackets. * p < 0.10, ** p < 0.05, *** p < 0.01
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Table 5: Heat exposure over the life cycle & school enrollment

Enrollment
Primary Middle  Secondary
(1) (2) (3)
Degree days > 24°C, in utero to age 5 0.003 -0.009 -0.036
(0.010) (0.008) (0.013)***
[0.018] [0.013] [0.019]*
Degree days > 24°C, age 6 to 10 -0.046 -0.033 0.021
(0.009)**  (0.008)***  (0.011)*
[0.015]***  [0.012]*** [0.016]
Degree days > 24°C, age 11 to 14 -0.032 -0.062
(0.004)**  (0.010)***
[0.008]***  [0.016]***
Degree days > 24°C, age 15 to 16 -0.031
(0.005)***
[0.008]***
Dep. variable mean (in levels) 0.749 0.753 0.578
Observations 4,836 4,836 2,418

Note: Table presents regression estimates of Equation 8, where f(7;,+) cap-
tures exposure to heat over the life cycle. The sample consists of children
between the ages of 7 to 10 (i.e. primary school age) in Column 1, children
between the ages of 11 to 14 (i.e. middle school age) in Column 2, and chil-
dren between the ages of 15 to 16 (i.e. secondary school age) in Column 3.
The dependent variable is the natural logarithm of the share of individuals
who are enrolled in school. All columns include controls for precipitation
as well as age, district and region x year of census fixed effects. We present
standard errors clustered by district in parentheses, and Conley standard
errors that allow for spatial correlation up to 500 km and arbitrary serial
correlation in brackets. * p < 0.10, ** p < 0.05, *** p < 0.01
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Appendix Figures

Figure A.1: Consistent district boundaries

Figure illustrates 441 consistent district boundaries that span the same area between 1991 and 2011. The
various splits and boundary changes between 1991 and 2011 can be deduced from the gray boundaries that
trace out the 2011 Census districts delineation.
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Figure A.2: Binned regression illustrating relationship between heat exposure and educa-
tional attainment

Figure illustrates coefficient estimates of the effect of contemporaneous heat exposure on grade
completion, with 95% confidence intervals. Each regression includes a vector of variables for tem-
perature exposure during school years in 3°C bins from 15°C to 33°C, with 21°C-24°C as the reference
category, a linear control for precipitation, region-cohort fixed effects, and Conley standard errors.
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Figure A.4: Alternate degree day thresholds

Figure plots coefficient estimates that capture impacts of contemporaneous heat exposure during
school years on primary (panel a), middle (panel b) and secondary (panel c¢) school completion
respectively using the panel fixed effects model with region-by-cohort fixed effects (Equation 6) at
varying degree day thresholds (+/ — 3 relative to the baseline specification of 24°C). Standard errors
are clustered at the district level, and 95% confidence intervals are illustrated with dashed lines.
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Appendix Tables

Table A.1: Trends in climate and educational attainment

1954 1959 1964 1969 1974 1979 1984 1989 1994 Total

Degree days > 24°C, in utero to age 5  880.2 1001.5 917.5 954.8 978.6  954.3  964.8  962.3 951.7 951.7
(445.3)  (477.8)  (464.2)  (474.7) (481.3) (463.1) (467.0) (468.0) (455.5) (467.1)

Degree days > 24°C, age 6 to 10 990.5 924.6 974.0 952.6 951.7 9731 939.6  965.5 998.0 963.3
(478.1)  (471.2)  (482.3) (468.8) (457.7) (471.7) (458.3) (459.4) (482.9) (470.2)

Degree days > 24°C, age 11 to 14 925.4 941.3 969.2 966.6 9426 9324  966.3  980.6 1014.5 959.9
(476.3)  (474.7)  (478.2)  (468.1) (456.4) (455.6) (462.2) (475.7) (478.7) (469.9)

Degree days > 24°C, age 15 to 16 922.8 1039.3 919.5 922.1 1034.2  954.1 963.9 1032.7  988.5 975.2
(463.6)  (501.9)  (452.4)  (441.5) (506.1) (465.7) (457.7) (499.7) (463.9) (474.9)

Share completed primary school 0.392 0.415 0.445 0.504 0.587  0.631 0.694 0.741 0.816 0.580
(0.149)  (0.160)  (0.161)  (0.164) (0.161) (0.149) (0.144) (0.126) (0.0993) (0.205)

Share completed middle school 0.262 0.285 0.316 0.375 0.413 0480  0.518  0.591 0.405
(0.110)  (0.122)  (0.127)  (0.139) (0.139) (0.149) (0.154) (0.151) (0.176)

Share completed secondary school 0.158 0.174 0.192 0.248 0.288 0.324 0.365 0.250
(0.0757) (0.0819) (0.0829) (0.0982) (0.112) (0.132) (0.143) (0.129)

Note: Table presents summary statistics of the weather variables constructed using ERA5 and Census education variables for each 5-year
cohort bin in our sample (N=425 districts). The column headers represent the birth year of the middle age cohort within each bin.



Table A.2: Trends in climate, educational investment and enrollment

Panel A: Educational investment 7 8 9 10 11 12 13 14 15 16 Total
Degree-days > 24°C, in utero to age 5 1021.2 1012.6 1001.2 1005.6 1022.8 1001.5 1010.2 983.4 992.2 983.9 1002.7
(450.3)  (436.6)  (447.9)  (437.7)  (444.6) (438.9) (450.5)  (441.8) (447.8) (450.3)  (444.3)

Degree-days > 24°C, age 6 to 10 1027.3 1044.4 1030.0 1034.8 1036.5 1014.8 1011.2 1013.6 1014.8 1006.6 1023.1
(447.5)  (449.8)  (457.2)  (443.2)  (447.8)  (443.5) (447.6)  (450.0) (454.4)  (455.0)  (449.4)

Degree-days > 24°C, age 11 to 14 1048.0 1028.3 1043.5 1037.4 1037.9 1029.8 1036.6
(455.5)  (444.3)  (462.2) (458.6)  (460.0) (462.9)  (456.8)

Degree-days > 24°C, age 15 to 16 1037.8 1031.0 1034.4

(463.9)  (462.2)  (463.1)
Household expenditure on education (Rs.) 2625.7  2528.6  2733.7 27054 31183  3107.8 3674.0 42086 51822 67023 35724
(5066.3) (5223.2) (5222.8) (5315.7) (5900.6) (5517.7) (6278.1) (6633.8) (7853.9) (9870.7) (6450.3)

Panel B: Enrollment

ey

Degree days > 24°C, in utero to age b 988.0 977.8 972.0 968.9 971.3 972.7 966.5 972.3 977.2 971.8 973.9
(466.1)  (463.3)  (463.4) (462.4) (462.8) (464.5) (461.2)  (462.9) (464.5) (462.4) (463.3)

Degree days > 24°C, age 6 to 10 1010.6  1009.1 1001.1 1004.2 994.9 987.5 984.4 978.0 963.1 968.2 990.1
(472.7)  (472.2)  (468.4) (469.5) (466.9) (464.2) (465.2)  (464.5) (461.4) (462.5)  (467.0)

Degree days > 24°C, age 11 to 14 1019.0 1010.6 1009.1 1001.1 1000.5 993.1 1005.6
(484.4)  (472.7)  (472.2) (468.4)  (468.5) (468.0) (472.4)

Degree days > 24°C, age 15 to 16 1019.0 1010.6 1014.8
(484.4)  (472.7)  (478.5)

Share enrolled in school 0.713 0.767 0.817 0.789 0.829 0.772 0.774 0.721 0.638 0.578 0.740

(0.185)  (0.184)  (0.153)  (0.162)  (0.133)  (0.160) (0.148)  (0.160) (0.177)  (0.179)  (0.181)

Note: Table presents summary statistics of the weather variables constructed using ERA5 and NSS educational investment variables in panel A, and Census
enrollment variables in panel B, for each age group in our sample. Column headers represent age at the time of survey. Household expenditure on education
in panel A is presented in real terms, deflated using the national CPI with 2010 as the base year.
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Table A.3: Contemporaneous heat exposure & educational attainment in levels

School Completion

Primary Middle Secondary

(1) 2) 3) (4) (5) (6)

Degree days > 24°C -0.013 -0.017 -0.012 -0.012 -0.003 -0.005
(0.003)*** (0.004)*** (0.002)*** (0.002)*** (0.001)** (0.002)***

[0.005]**  [0.006]*** [0.003]*** [0.004]***  [0.003] [0.003]
Precipitation z-score -0.001 0.001 -0.004 0.002 0.000 -0.000
(0.002) (0.003) (0.001)** (0.002) (0.001) (0.001)
[0.004] [0.004] [0.003] [0.003] [0.003] [0.003]

Region-cohort trends Y N Y N Y N

Region-cohort FE N Y N Y N Y
Dep. variable mean (in levels) 0.580 0.580 0.405 0.405 0.250 0.250
Observations 3,825 3,825 3,400 3,400 2,975 2,975

Note: Table presents regression estimates of Equation 6, where f(7,;.) captures contemporaneous expo-
sure to heat during school years. More specifically, f(T.;-) captures the annual average number of degree
days above 24°C during the years in which individuals are age-appropriate for the corresponding level of
schooling. The dependent variable is the share of individuals in a birth cohort who have completed at least
primary school (columns 1 and 2), middle school (columns 3 and 4) and secondary school (columns 5 and 6).
All columns include controls for precipitation as well as district and birth cohort fixed effects. We present
standard errors clustered by district in parentheses, and Conley standard errors that allow for spatial cor-
relation up to 500 km and arbitrary serial correlation in brackets. * p < 0.10, ** p < 0.05, *** p < 0.01



Table A.4: Heat exposure & cohort size

Cohort Size

Primary = Middle  Secondary
(1) (2) (3)

Degree days > 24°C, last ten years  0.014 0.027 0.033
(0.008)  (0.009)***  (0.010)***
[0.013]  [0.013]**  [0.013]***

Precipitation z-score, last ten years  0.007 0.017 0.013
(0.009)  (0.009)* (0.011)
[0.011] [0.010]* [0.011]

Dep. variable mean (in levels) 0.444 0.307 0.203
Observations 5,124 5,124 5,124

Note: The sample consists of five-year birth cohorts born between 1952
and 1971, as observed across 3 Census waves: 1991, 2001 and 2011.
The dependent variable is the natural logarithm of the share of indi-
viduals in a cohort who have completed at least primary school (col-
umn 1), middle school (column 2), and secondary school (column 3).
The key independent variable captures the annual average number of
degree days above 24°C in the preceding ten years. All columns include
controls for precipitation as well as cohort, district, and region x cen-
sus year fixed effects. We present standard errors clustered by district
in parentheses, and Conley standard errors that allow for spatial cor-
relation up to 500km and arbitrary serial correlation in brackets. * p
< 0.10, ¥ p < 0.05, *** p < 0.01
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